Math 102

Krishanu Sankar

October 25, 2018

Announcements

- Midterm is today/tonight! If you do not yet know your room assignment, see me after class and I can tell you where to go.
- Midterm policies
 - You will not be allowed to leave the room until the end of the 90 minutes, and only one student will be allowed to the washroom at a time. Make sure you plan for this. (ex. food/water)
 - No calculators or notes are allowed.
 - Bring your ID.

Goals Today

- Implicit differentiation practice
- Exponential functions
 - Exponential growth and decay
 - The derivative
 - The natural logarithm

The Derivative of an Implicit Function

Question: Shown is the graph of $x^2 + 3y^2 - xy - 11 = 0$. The blue point is the highest point on the graph. How would we calculate its coordinates?

Strategy: At the point shown, $\frac{dy}{dx} = 0$, so let's calculate $\frac{dy}{dx}$ and set it equal to zero.

$$x^{2} + 3y^{2} - xy - 11 = 0$$
$$2x + 6y\frac{dy}{dx} - (x\frac{dy}{dx} + y) = 0$$
$$(6y - x)\frac{dy}{dx} + (2x - y) = 0$$
$$\boxed{\frac{dy}{dx} = \frac{y - 2x}{6y - x}}$$

 $\frac{dy}{dx} = \frac{y-2x}{6y-x} = 0 \implies y = 2x.$ Plug this back into our original equation $x^2 + 3y^2 - xy - 11 = 0$:

$$x^{2} + 3(2x)^{2} - x(2x) - 11 = 0$$

 $\frac{dy}{dx} = \frac{y-2x}{6y-x} = 0 \implies y = 2x.$ Plug this back into our original equation $x^2 + 3y^2 - xy - 11 = 0$:

$$x^{2} + 3(2x)^{2} - x(2x) - 11 = 0$$

Question: Consider the same implicit function, $x^2 + 3y^2 - xy - 11 = 0.$

- How would you calculate the leftmost point on the graph?
- Suppose that x and y both depend on t. At the point (-^{2√11}/₃, ^{√11}/₃), suppose that ^{dx}/_{dt} = 2. Calculate ^{dy}/_{dt}.

Exponential Functions

x	1	2	3	4	5	•••	10	•••	20	• • •
x^2	1	4	9	16	25	•••	100	•••	400	•••
2^x	2	4	8	16	32	•••	1,024	•••	1,048,576	•••

- A power function has the form f(x) = Cx^a for constants C and a. Examples: x, x², x³, x^{0.5} = √x. a is the exponent.
- An exponential function has the form
 f(x) = Ca^x for constants C and a with a > 0.
 Examples: 2^x, 3^x, 0.5^x. a is the base.

a > 1 ⇒ exponential growth.
 a < 1 ⇒ exponential decay.

Question: Suppose that f(x) is an exponential function such that f(0) = 2 and f(1) = 6. What is f(3)? f(-1)?

Question: What is the derivative of $f(x) = 2^x$?

The derivative of an exponential function Question: What is the derivative of $f(x) = 2^x$?

Intuition: 'The secant line from x = 1 to x = 2 is twice as sloped as the secant line from x = 0 to

x = 1.'

Question: What is the derivative of $f(x) = 2^x$?

Intuition: 'The secant line from x = 1 to x = 2 is twice as sloped as the secant line from x = 0 to x = 1.'

'More generally, the secant line from x + 1 to (x + 1) + h is twice as sloped as the secant line from x to x + h.'

Question: What is the derivative of $f(x) = 2^x$?

Intuition: 'The secant line from x = 1 to x = 2 is twice as sloped as the secant line from x = 0 to x = 1.'

'More generally, the secant line from x + 1 to (x + 1) + h is twice as sloped as the secant line from x to x + h.'

'I think that the **tangent line** at x + 1 is twice as sloped as the tangent line at x. More generally, I guess that $f'(x) = C \cdot 2^x$ for some constant C.'

Question: What is the derivative of $f(x) = 2^x$?

Intuition: 'The secant line from x = 1 to x = 2 is twice as sloped as the secant line from x = 0 to x = 1.'

'More generally, the secant line from x + 1 to (x + 1) + h is twice as sloped as the secant line from x to x + h.'

'I think that the **tangent line** at x + 1 is twice as sloped as the tangent line at x. More generally, I guess that $f'(x) = C \cdot 2^x$ for some constant C.'

Question: Can we prove this? And what is C?

The derivative of $f(x) = 2^x$ By definition,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{2^{x+h} - 2^x}{h}$
= $\lim_{h \to 0} \frac{2^x \cdot 2^h - 2^x}{h}$
= $\lim_{h \to 0} \frac{2^x (2^h - 1)}{h}$
= $2^x \left(\lim_{h \to 0} \frac{2^h - 1}{h}\right)$

The derivative of $f(x) = a^x$ Let $f(x) = a^x$. Then $f'(x) = a^x \cdot \lim_{h \to 0} \frac{a^h - 1}{h}$

where $\lim_{h\to 0} \frac{a^{h}-1}{h}$ is a constant that depends only on a.

The derivative of $f(x) = a^x$ Let $f(x) = a^x$. Then $f'(x) = a^x \cdot \lim_{h \to 0} \frac{a^h - 1}{h}$

where $\lim_{h\to 0} \frac{a^{h}-1}{h}$ is a constant that depends only on a.

This constant is known as the **natural logarithm** of a, and is also denoted by $\ln(a)$.

$$\ln(a) := \lim_{h \to 0} \frac{a^h - 1}{h}$$

$$\ln(0.5) = \lim_{h \to 0} \frac{0.5^h - 1}{h} \approx -0.692147...$$
$$\ln(1) = \lim_{h \to 0} \frac{1^h - 1}{h} = 0$$
$$\ln(2) = \lim_{h \to 0} \frac{2^h - 1}{h} \approx 0.692147...$$
$$\ln(3) = \lim_{h \to 0} \frac{3^h - 1}{h} \approx 1.098612$$

$$\ln(0.5) = \lim_{h \to 0} \frac{0.5^h - 1}{h} \approx -0.692147...$$
$$\ln(1) = \lim_{h \to 0} \frac{1^h - 1}{h} = 0$$
$$\ln(2) = \lim_{h \to 0} \frac{2^h - 1}{h} \approx 0.692147...$$
$$\ln(3) = \lim_{h \to 0} \frac{3^h - 1}{h} \approx 1.098612$$

e is the unique number such that $\ln(e) = 1$. It is between 2 and 3, and is approximately

$$e \approx 2.7182818\ldots$$

Another perspective: e^x and $\ln(x)$ are **inverse** functions. That is, $e^{\ln(a)} = a$ and $\ln(e^a) = a$. Proof of $e^{\ln(a)} = a$: Let $f(x) = (e^{\ln(a)})^x$.

Another perspective: e^x and $\ln(x)$ are **inverse** functions. That is, $e^{\ln(a)} = a$ and $\ln(e^a) = a$.

Proof of $e^{\ln(a)} = a$: Let $f(x) = (e^{\ln(a)})^x$. Then $f(x) = e^{\ln(a) \cdot x}$, so by the Chain Rule,

$$f'(x) = e^{\ln(a) \cdot x} \cdot \ln(a)$$

Another perspective: e^x and $\ln(x)$ are **inverse** functions. That is, $e^{\ln(a)} = a$ and $\ln(e^a) = a$. Proof of $e^{\ln(a)} = a$: Let $f(x) = (e^{\ln(a)})^x$. Then $f(x) = e^{\ln(a) \cdot x}$, so by the Chain Rule, $f'(x) = e^{\ln(a) \cdot x} \cdot \ln(a)$

It therefore follows that $\ln(e^{\ln(a)}) = \ln(a)$.

Another perspective: e^x and $\ln(x)$ are **inverse** functions. That is, $e^{\ln(a)} = a$ and $\ln(e^a) = a$. Proof of $e^{\ln(a)} = a$: Let $f(x) = (e^{\ln(a)})^x$. Then $f(x) = e^{\ln(a) \cdot x}$, so by the Chain Rule, $f'(x) = e^{\ln(a) \cdot x} \cdot \ln(a)$ It therefore follows that $\ln(e^{\ln(a)}) = \ln(a)$. So

 $e^{\ln(a)} = a.$

Good luck!