Math 102

Krishanu Sankar

October 25, 2018

Announcements

- Midterm is today/tonight! If you do not yet know your room assignment, see me after class and I can tell you where to go.
- Midterm policies
- You will not be allowed to leave the room until the end of the 90 minutes, and only one student will be allowed to the washroom at a time. Make sure you plan for this. (ex. food/water)
- No calculators or notes are allowed.
- Bring your ID.

Goals Today

- Implicit differentiation - practice
- Exponential functions
- Exponential growth and decay
- The derivative
- The natural logarithm

The Derivative of an Implicit Function

Question: Shown is the graph of $x^{2}+3 y^{2}-x y-11=0$.
The blue point is the highest point on the graph. How would we calculate its coordinates?

Strategy: At the point shown, $\frac{d y}{d x}=0$, so let's calculate $\frac{d y}{d x}$ and set it equal to zero.

$$
\begin{gathered}
x^{2}+3 y^{2}-x y-11=0 \\
2 x+6 y \frac{d y}{d x}-\left(x \frac{d y}{d x}+y\right)=0 \\
(6 y-x) \frac{d y}{d x}+(2 x-y)=0 \\
\frac{d y}{d x}=\frac{y-2 x}{6 y-x}
\end{gathered}
$$

$\frac{d y}{d x}=\frac{y-2 x}{6 y-x}=0 \Longrightarrow y=2 x$. Plug this back into our original equation $x^{2}+3 y^{2}-x y-11=0$:

$$
x^{2}+3(2 x)^{2}-x(2 x)-11=0
$$

$\frac{d y}{d x}=\frac{y-2 x}{6 y-x}=0 \Longrightarrow y=2 x$. Plug this back into our original equation $x^{2}+3 y^{2}-x y-11=0$:

$$
x^{2}+3(2 x)^{2}-x(2 x)-11=0
$$

$$
11 x^{2}-11=0 \Longrightarrow x=1, y=2 \text { or } x=-1, y=-2
$$

Question: Consider the same implicit function, $x^{2}+3 y^{2}-x y-11=0$.

- How would you calculate the leftmost point on the graph?
- Suppose that x and y both depend on t. At the point $\left(-\frac{2 \sqrt{11}}{3}, \frac{\sqrt{11}}{3}\right)$, suppose that $\frac{d x}{d t}=2$. Calculate $\frac{d y}{d t}$.

Exponential Functions

x	1	2	3	4	5	\cdots	10	\cdots	20	\cdots
x^{2}	1	4	9	16	25	\cdots	100	\cdots	400	\cdots
2^{x}	2	4	8	16	32	\cdots	1,024	\cdots	$1,048,576$	\cdots

- A power function has the form $f(x)=C x^{a}$ for constants C and a. Examples: $x, x^{2}, x^{3}, x^{0.5}=\sqrt{x} . a$ is the exponent.
- An exponential function has the form $f(x)=C a^{x}$ for constants C and a with $a>0$. Examples: $2^{x}, 3^{x}, 0.5^{x} . a$ is the base.

- $a>1 \Longrightarrow$ exponential growth.
- $a<1 \Longrightarrow$ exponential decay.

Question: Suppose that $f(x)$ is an exponential function such that $f(0)=2$ and $f(1)=6$. What is $f(3) ? f(-1)$?

Question: Suppose that $f(x)$ is an exponential function such that $f(0)=2$ and $f(1)=6$. What is $f(3) ? f(-1)$?

$C a^{0}=2$ and $C a^{1}=6$. Thus, $C=2$ and $a=3$, i.e. $f(x)=2 \cdot 3^{x}$.

$$
f(3)=2 \cdot 3^{3}=54
$$

$$
f(-1)=2 \cdot 3^{-1}=2 / 3
$$

The derivative of an exponential function

Question: What is the derivative of $f(x)=2^{x}$?

The derivative of an exponential function

Question: What is the derivative of $f(x)=2^{x}$? Intuition: 'The secant line from $x=1$ to $x=2$ is twice as sloped as the secant line from $x=0$ to $x=1$.'

The derivative of an exponential function

 Question: What is the derivative of $f(x)=2^{x}$? Intuition: 'The secant line from $x=1$ to $x=2$ is twice as sloped as the secant line from $x=0$ to $x=1$.'More generally, the secant line from $x+1$ to $(x+1)+h$ is twice as sloped as the secant line from x to $x+h$.'

The derivative of an exponential function

 Question: What is the derivative of $f(x)=2^{x}$? Intuition: 'The secant line from $x=1$ to $x=2$ is twice as sloped as the secant line from $x=0$ to $x=1$.'More generally, the secant line from $x+1$ to $(x+1)+h$ is twice as sloped as the secant line from x to $x+h$.'
'I think that the tangent line at $x+1$ is twice as sloped as the tangent line at x. More generally, I guess that $f^{\prime}(x)=C \cdot 2^{x}$ for some constant C.'

The derivative of an exponential function

 Question: What is the derivative of $f(x)=2^{x}$? Intuition: 'The secant line from $x=1$ to $x=2$ is twice as sloped as the secant line from $x=0$ to $x=1$.'More generally, the secant line from $x+1$ to $(x+1)+h$ is twice as sloped as the secant line from x to $x+h$.'
'I think that the tangent line at $x+1$ is twice as sloped as the tangent line at x. More generally, I guess that $f^{\prime}(x)=C \cdot 2^{x}$ for some constant C.
Question: Can we prove this? And what is C ?

The derivative of $f(x)=2^{x}$

By definition,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2^{x+h}-2^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2^{x} \cdot 2^{h}-2^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2^{x}\left(2^{h}-1\right)}{h} \\
& =2^{x}\left(\lim _{h \rightarrow 0} \frac{2^{h}-1}{h}\right)
\end{aligned}
$$

The derivative of $f(x)=a^{x}$

Let $f(x)=a^{x}$. Then

$$
f^{\prime}(x)=a^{x} \cdot \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
$$

where $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}$ is a constant that depends only on a.

The derivative of $f(x)=a^{x}$

Let $f(x)=a^{x}$. Then

$$
f^{\prime}(x)=a^{x} \cdot \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
$$

where $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}$ is a constant that depends only on a.

This constant is known as the natural logarithm of a, and is also denoted by $\ln (a)$.

$$
\ln (a):=\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
$$

$$
\begin{gathered}
\ln (0.5)=\lim _{h \rightarrow 0} \frac{0.5^{h}-1}{h} \approx-0.692147 \ldots \\
\ln (1)=\lim _{h \rightarrow 0} \frac{1^{h}-1}{h}=0 \\
\ln (2)=\lim _{h \rightarrow 0} \frac{2^{h}-1}{h} \approx 0.692147 \ldots \\
\ln (3)=\lim _{h \rightarrow 0} \frac{3^{h}-1}{h} \approx 1.098612
\end{gathered}
$$

$$
\begin{gathered}
\ln (0.5)=\lim _{h \rightarrow 0} \frac{0.5^{h}-1}{h} \approx-0.692147 \ldots \\
\ln (1)=\lim _{h \rightarrow 0} \frac{1^{h}-1}{h}=0 \\
\ln (2)=\lim _{h \rightarrow 0} \frac{2^{h}-1}{h} \approx 0.692147 \ldots \\
\ln (3)=\lim _{h \rightarrow 0} \frac{3^{h}-1}{h} \approx 1.098612
\end{gathered}
$$

e is the unique number such that $\ln (e)=1$. It is between 2 and 3 , and is approximately

$$
e \approx 2.7182818 \ldots
$$

Exponential and Logarithm

Another perspective: e^{x} and $\ln (x)$ are inverse functions. That is, $e^{\ln (a)}=a$ and $\ln \left(e^{a}\right)=a$.
Proof of $e^{\ln (a)}=a$: Let $f(x)=\left(e^{\ln (a)}\right)^{x}$.

Exponential and Logarithm

Another perspective: e^{x} and $\ln (x)$ are inverse functions. That is, $e^{\ln (a)}=a$ and $\ln \left(e^{a}\right)=a$.
Proof of $e^{\ln (a)}=a$: Let $f(x)=\left(e^{\ln (a)}\right)^{x}$. Then $f(x)=e^{\ln (a) \cdot x}$, so by the Chain Rule,

$$
f^{\prime}(x)=e^{\ln (a) \cdot x} \cdot \ln (a)
$$

Exponential and Logarithm

Another perspective: e^{x} and $\ln (x)$ are inverse functions. That is, $e^{\ln (a)}=a$ and $\ln \left(e^{a}\right)=a$.
Proof of $e^{\ln (a)}=a$: Let $f(x)=\left(e^{\ln (a)}\right)^{x}$. Then $f(x)=e^{\ln (a) \cdot x}$, so by the Chain Rule,

$$
f^{\prime}(x)=e^{\ln (a) \cdot x} \cdot \ln (a)
$$

It therefore follows that $\ln \left(e^{\ln (a)}\right)=\ln (a)$.

Exponential and Logarithm

Another perspective: e^{x} and $\ln (x)$ are inverse functions. That is, $e^{\ln (a)}=a$ and $\ln \left(e^{a}\right)=a$.
Proof of $e^{\ln (a)}=a$: Let $f(x)=\left(e^{\ln (a)}\right)^{x}$. Then $f(x)=e^{\ln (a) \cdot x}$, so by the Chain Rule,

$$
f^{\prime}(x)=e^{\ln (a) \cdot x} \cdot \ln (a)
$$

It therefore follows that $\ln \left(e^{\ln (a)}\right)=\ln (a)$. So $e^{\ln (a)}=a$.

Good luck!

